US 58 ARTERIAL PRESERVATION

US 58 Arterial Preservation Plan

Brunswick and Mecklenburg Counties

November 1st, 2019

Prepared for:

Virginia Department of Transportation
1401 E Main Street
Richmond, Va 23219
1 (800) 367-7623
www.virginiadot.org

Prepared by:
Michael Baker
INTERNATIONAL
Michael Baker International
3200 Rockbridge Street
Richmond, Va 23230
1 (804) 282-1821
www.mbakerintl.com

TABLE OF CONTENTS

Chapter 1: Introduction 1
1.1 Study Purpose 1
1.2 What is the Arterial Preservation Program?$\ldots .1$
1.3 Study Area 1
1.4 Review of Existing Studies and Documents 1
1.5 Public Involvement Process 2
1.5.1 Stakeholder Surveys 2
1.5.2 Public Outreach 2
Chapter 2: Existing Conditions 3
2.1 Existing Land Use 3
2.2 Existing Infrastructure 3
2.3 Existing Access 4
2.4 Crash Analysis 7
2.5 Existing Traffic Volumes 9
2.6 Existing Traffic Operations 9
Chapter 3: Future Conditions 12
3.1 Development of Growth Rates 12
3.1.1 Historical Average Annual Traffic Volumes and Travel Patterns 12
3.1 .2 Socio-Economic Data 12
3.1.3 Annualized Background Growth Rate 12
3.2 Projected Future Growth (2040) and Traffic Volumes 13
3.2.1 Future Land Use and Approved Development 13
3.2.2 Trip Generation and Distribution 13
3.2.3 Future (2040) Traffic Volumes 13
Chapter 4: Future (2040) Traffic Conditions. 15
4.1 Future Traffic Operations 15
4.2 Future No-Build Traffic Operations and Deficiencies 15
4.3 Results of Operational Analyses for Recommended Improvements 15
Chapter 5: Alternatives and Recommendations 19
5.1 US 58 Corridor Recommendations 19
5.2 Possible Funding Sources 19
LIST OF FIGURES
Figure 1. Study Area 1
Figure 2. The Intersection of Route 58 and I-85 in South Hill 3
Figure 3. Crossover Locations4
Figure 4. Eastbound Access Points, Western Half of Study Area 5
Figure 5. Westbound Access Points, Western Half of Study Area 5
Figure 6. Eastbound Access Points, Eastern Half of Study Area 6
Figure 7. Westbound Access Points, Eastern Half of Study Area6
Figure 8. Crashes by Type 8
Figure 9. Crashes by Severity 8
Figure 10. Corridor Crash Rates 8
Figure 11. Corridor Crash Density 8
Figure 12. Corridor Cash Severity 8
Figure 13. Heavy Vehicle Percentages 9
Figure 14. AM Travel Time Ratio 10
Figure 15. PM Travel Time Ratio 11
Figure 16. Traffic Analysis Zone Growth 14
LIST OF TABLES
Table 1. Core Study Team Meetings. 2
Table 2. Stakeholder Survey Responses 2
Table 3. Crossover Points Findings 4
Table 4. Crash Modification Factors 7
Table 5. Existing Level of Service 9
Table 6. Historical Average Daily Traffic12
Table 7. Employment and Population Growth Estimates 13
Table 8. Future Traffic Voumes 13
Table 9. Future Traffic Operations: Virginia Avenue and Route 58 15
Table 10. Future Traffic Operations: VA 92 and Route 58 16
Table 11. Future Traffic Operations: Kingdom Hall/US 1 and Route 58 16
Table 12. Future Traffic Operations: Theater Road and Route 58 17
Table 13. Future Traffic Operations: Main Street (LaCrosse) and Route 58 17
Table 14. Future Traffic Operations: VA 641 (Bright Leaf Road) and Route 58 18

LIST OF ACRONYMS

ADT ... Average Daily Traffic	
HCM .. Highway Capacity Manual	
LOS ... Level of Service	
PDC ..Planning District Commission	
PSI .. Potential for Safety Improvement	
TAZ ...Traffic Analysis Zone	
TMPD.. Transportation and Mobility Planning Division	
TOSAM.. Traffic Operations and Safety Analysis Manual	
TTR	vel Time Ratio
VDOT	n

CHAPTER 1: INTRODUCTION

1.1 Study Purpose

The purpose of the US 58 Arterial Preservation Plan is to develop a holistic approach that identifies ways to ensure the safety and preserve the capacity of the US 58 study corridor without wide-scale roadway widenings or increased signal proliferation. This Arterial Preservation Plan has been requested to identify investment recommendations that will help preserve and enhance this key transportation corridor due to the important role it plays in the region as a key freight corridor serving the Port of Virginia, a vital link within the Commonwealth, and a key facility for connections to North Carolina and points south.
1.2 What is the Arterial Preservation Program?

The Virginia Department of Transportation's (VDOT) Arterial Preservation Program is designed to preserve and enhance the capacity and safety of the critical transportation highways in Virginia. These major highways accommodate the long-distance mobility of people and goods throughout the Commonwealth. Preserving mobility on these corridors is critical to the current and future economy.

Within the framework of the Arterial Preservation Program, VDOT is developing methodologies to consistently and programmatically evaluate the corridors, creating a toolbox of preservation and
enhancement strategies and identifying opportunities to implement these strategies. As an alternative to widening major highways to add capacity, preservation and enhancement strategies promote the use of innovative transportation solutions, minimizing delays for through traffic and improving safety, while incorporating local economic development goals. Developed in partnership with localities, the strategies are used as tools to plan for infrastructure that supports future land use and development.

1.3 Study Area

The study area, located in VDOT's Richmond construction district, traverses Brunswick and Mecklenburg Counties and extends from the Hampton Roads construction district boundary at the Greensville iles in length Figure 1 depicts the
1.4 Review of Existing Studies and Documents

A literature review gathered data and documented any proposed developments or projects for the US 58 corridor within the study area. These documents assisted in the development of land use assumptions

Figure 1. Study Area

and growth patterns and helped identify potential problem areas along the US 58 corridor. The literature eview included the comprehensive plans for each locality in the study area, the Six-Year Improvement Plan, long range transportation plans, and corridor studies as noted below:

- VTrans 2040
- Southside Planning District Commission (PDC) 2035 Regional Long Range Transportation Plan
- Brunswick County Comprehensive Plan
- Mecklenburg County Long Range Plan
- Town of Boydton Comprehensive Plan
- Town of Clarksville Comprehensive Plan
- Town of South Hill Comprehensive Plan
- US 58 Corridor Study South Hill, VA - La Crosse, VA (VDOT)

1.5 Public Involvement Process

The public involvement process began with the April 17th, 2018 project kick-off/scoping meeting and subsequent discussion with the core study team. Project stakeholders involved in the development of the study included:

- Brunswick County
- Mecklenburg County
- Town of Boydton
- Town of Brodnax
- Town of Clarksville
- Town of LaCrosse
- Town of Lawrenceville
- Town of South Hill
- Southside PDC
- VDOT at the Residency, District, and Central Office level

This stakeholder group consisted of staff-level representatives from each of the identified organizations. This group met at key milestones throughout the study to review progress and results. These meetings were held at the Southside PDC offices located at 200 S . Mecklenburg Avenue in the Town of South Hill. Table 1 lists the dates and topics of these meetings.

Table 1. Core Study Team Meetings

Meeting Date	Table 1. Core Study Team Meetings
April 17, 2018	Meeting Topic
September 18, 2018	Existing Conditions/Opportunities for Improvement
May 20, 2019	Preliminary Study Recommendations
August 7,2019	Final Study Recommendations

1.5.1 Stakeholder Surveys

As part of the outreach process, a web-based survey was conducted with study stakeholders in the summer of 2018 to understand current issues along the corridor and possible changes to the land use and local plans in the study area. Respondents also ranked highly-needed improvements in the corridor. Table 2 presents a summary of responses received

Table 2. Stakeholder Survey Responses

Current Issues Along the Study Corridor (Not Ranked)
Safety
Allow easier access to businesses
Corridor needs updating to current standards
Need improved / additional turning lanes
Highly Needed Improvements (Ranked)
1. Access improvements
2. Safety improvements
3. Operational improvements
4. Geometric improvements

1.5.2 Public Outreach

A public meeting was held on January 29, 2019 at Southside PDC to review the existing conditions assessment and opportunities for improvements along the US 58 corridor. Eighteen citizens and stakeholders attended this meeting.

Members of the public were invited to provide comments on the preliminary findings and to sugges additional locations where improvements should be considered. Feedback received from the public was further reviewed during the recommendations development process.

General comments received at the public meetings included:
Concerns with truck traffic

- Concerns with vehicle speeds
- Need to improve median crossovers and add turn lanes
- Need to update corridor to current design standards
- Poor visibility at crossovers

Specific areas of concern from the public meeting included:

- Cattail Drive and Twin Ponds - No turn lanes and dangerous crossing maneuver
- Crashes from Totaro Creek to US 46
- Dangerous turning movements around Brunswick Square
- Speed limit not observed in Brodnax
- I-85 in South Hill to La Crosse needs attention
- Turn lane improvements and acceleration lanes on US 58 in Boydton

A second and final public meeting was held on September 4, 2019 at Southside PDC to present the fina corridor recommendations. The meeting included a formal presentation from the study team, various displays describing the study results, recommendations, and a citizen comment area. Twenty citizen and stakeholders attended the second public meeting. No written comments were submitted by the public in response to the final study recommendations.

CHAPTER 2: EXISTING CONDITIONS

2.1 Existing Land Use

The study area traverses miles of rural land, occasionally passing by the edge of a small town or serving as a major corridor for larger population centers' suburbs. The landscape is primarily agricultural or wooded in land use. The rural portions of the corridor feature large lot residential uses, large-scale industrial uses, and institutional uses. At major crossroads, low-density small-town development is likely and includes smaller lot residential uses as well as small-scale commercial and industrial. Further East, approaching Lawrenceville and South Hill, the study area becomes suburban in character, becoming the primary access route for regionally-significant commercial centers.

Existing Land Use Key Findings

- Clusters of single-family homes with direct access to US 58

In the Town of Brodnax;

- Between Park View Circle and US 1 in Mecklenburg County; and
- Between Carters Point Road and Buffalo Springs Road in Mecklenburg County
- Retail development with direct access to US 58

Brunswick Square in Lawrenceville;
In the Town of La Crosse; and
In the Town of South Hill.

- Industrial development with direct access to US 58:

Dominion Power, Brunswick County

- Redland Brick, Brunswick County
- Scotts, Brunswick County

Brodnax Lumber, Brunswick County; and
Microsoft Data Center, Town of Boydton

- Institutional uses with direct access to US 58
- Park View High School, Mecklenburg County; and
- Park View Middle School, Mecklenburg County.
- Other relevant development with direct access to US 58:

Lawrenceville-Brunswick Municipal Airport.
2.2 Existing Infrastructure

A field review was conducted on June 12, 2018 at the outset of the study to review roadway and intersection configurations, identify deficiencies and areas of concern including sight distances or grade issues, identify unique roadway features, and observe traffic operations. US 58 is primarily a our-lane roadway running east-west and includes an interchange with Interstate 85 (I-85). The US 58 study corridor intersects with US 1 and US 15 in Mecklenburg County. Access along US 58 is primarily uncontrolled within the study area. The only sections along the corridor where access is fully or partially 6 (Christanna Highway) and Route 641 (Bright Leaf Road). A full description of the field review for the corridor is available in Appendix B.

The corridor has several roadway segments with design features that may reduce capacity, level of service or safety. The western end of the corridor is characterized by numerous intersections and crossover with sub-standard turn lanes. Often, significant grade differentials exist between the eastbound and westbound lanes of US 58 at intersections and crossovers. At Route 92 (Washington Street) and Rout 4 (Buggs Island Road), limited sight distance impairs turning movements. Between the western US 1 intersection and Route 780 (Theater Road), US 58 has a two-way left turn lane accompanied by a noted increase in direct access points to US 58 .

The highest intensity of development along the corridor is located in South Hill due to the presence of the 1-85 interchange. The interchange suffers from adjacent roadways in close proximity, imprope pavement markings for the southbound $1-85$ to the waceund US 58 through movement and no turn lane or taper for westbound US 58 to northbound I 85 . On the eastern side of the interchange motorists were observed cutting across eastbound US 58 from the northbound I-85 off-ramp to turn left in a distance of less than 600 feet. Numerous access points and median crossovers accompanied by significant grade differences between lanes complicate maneuvers in this area

East along the corridor, heading toward Brodnax, shoulder widths and shoulder types become inconsisten and crossovers lack turning lanes. US 58 in Brodnax is characterized by a continuous two-way left turn lane with frequent access points and narrow shoulders. The raised median resumes east of Brodnax, but several crossovers lack turn lanes and have poor sight distance. From Route 46 (Christanna Highway) to Route 641 (Bright Leaf Road), US 58 is primarily limited access. Route 641 is a skewed intersection that may be difficult for trucks to navigate. The pattern of frequent crossovers with insufficient turn lanes continues across the rolling terrain to the eastern termini of the study corridor. The results of the ful inventory field review are available in Appendix C.

2.3 Existing Access

he number of crossovers such as intersections and median crossovers, points along the US 58 corridor ere inventoried and the distance between each point measured and reviewed for compliance with VDOT's Access Management Spacing Standards which takes into account functional classification, roadway speed, and access type.
As identified in Table 3 and Figure 3, the evaluation of crossovers shows that only 54% percent (2.8 mi) of westbound segments and 32% percent (2.4 mi) of eastbound segments in the study corridor are noncompliant. The most significant areas of non compliance are in the Town of South Hill, and near the Town f Lawrenceville

*Compliance was calculated based on VDOT design standards, Table 2-2 of the Virginia Road Design Manual

Figures 4 through 7 present a comprehensive inventory of access points and crossovers along the study corridor.

Figure 3. Crossover Locations: Of 111 total crossover locations, 64 meet VDOT spacing requirements

Figure 5. Westbound Access Points, Western Half of Study Area

Figure 6. Eastbound Access Points, Eastern Half of Study Area

Figure 7. Westbound Access Points, Eastern Half of Study Area

2.4 Crash Analysis

An evaluation of corridor safety was conducted based on an analysis of crash information. The latest five years of available crash data (2013 to 2018) was obtained from VDOT's Roadway Network System to identify potential locations for safety improvements.

Analysis of existing conditions found that the crash rate for over 80% of the corridor is at or below the statewide average for a rural arterial. Portions of the corridor with crash rates that are greater than 100% above the statewide average are near or within the Towns of Lawrenceville and South Hill as well as near the western Mecklenburg County Line. Figure 10 illustrates the crash rate within the study area, Figure 11 illustrates the crash density within the study area, and Figure 12 illustrates the crash severity within the study area.

Crash Analysis Key Findings:

- 845 total crashes were reported between 2013 and 2018 along the study corridor. In 69% of crashes only property damage occurred with no injuries or fatalities. 2% of crashes resulted in fatal injury.
- The greatest number of crashes were fixed-object, off-road collisions, which accounted for 32.0% of crashes. This is followed closely by angle collisions, which accounted for 21.5% of crashes.
- The crash rate is highest in the Town of South Hill near the I-85 interchange.

In accordance with VDOT's Arterial Preservation Program, innovative intersections and access management techniques were evaluated where applicable during the recommendations development of this study. Innovative intersections and access management inherently provide safety benefits by removing and separating conflict points that may exist in traditional intersection designs.

The most common method for determining the potential safety benefits of a roadway improvement is the calculation of expected crash reduction. This is done using crash reduction percentages from the Federal Highway Administration's (FHWA) Crash Modification Factors (CMF) Clearinghouse website, related safety research, and Virginia crash rate summaries and models. A CMF is an indicator of how crash occurrence will change as a result of a project based on evidence from similar improvements. A CMF less than 1.0 indicates a treatment that has a potential to reduce crashes. For example, a treatment with a CMF of 0.86 indicates that there is an expected 14 percent reduction in total estimated crash frequency. Table 4 displays fatal and injury crash CMFs used by VDOT for typical innovative intersections and access management treatments. Those in bold have been recommended at one or more areas along the corridor as part of this study.

Table 4. Crash Modification Factors

Improvement Type / Features	Fatal + Injury CMF
Intersections	
Roundabout: Convert signal to roundabout	0.40
Roundabout: Convert stop/yield control to roundabout	0.20
Access Management: Close median opening (allow right-in right-out only)	0.40
Two-way Stop Control to Restricted Crossing U-Turn	0.65
Signal Control to Signalized Restricted Crossing U-Turn	0.80
Signal Control to Continuous Green T Signal	0.85
Stop Control to Continous Green T	0.85
Displaced Left Turn	0.80
Median U-Turn	0.70
Interchanges	
Non-Freeway Segment: Convert Diamond to Diverging Diamond Interchange	0.30
Non-Freeway Segment: Convert Diamond to Single Point Urban Interchange	0.60
Segments	
Access Management: Reduce Driveway Density (eliminate/close)	0.70
Access Management: Provide Median (allow right-in right-out only)	0.40

2.5 Existing Traffic Volumes

Existing peak hour traffic volumes were developed using turn movement counts collected on May 16th, 2018 at the intersections listed below.

- US 58 / Business US 58 (Virginia Avenue) - Town of Clarksville
- US 58 / US 15 North - Town of Clarksville
- US 58 / VA 92 (Washington Street) - Mecklenburg County
- US 58 / VA 4 (Buggs Island Road) - Mecklenburg County
- US 58 / US 1 (Big Fork) - Mecklenburg County
- US 58 / VA 780 (Theater Road) - Town of South Hill
- US 58 / VA 641 (Bright Leaf Road) - Brunswick County

A full list of 2018 intersection volumes by AM and PM peak hour is found in Appendix D. The AM and PM peak hours are the times with the highest traffic volumes in the study area. The AM peak hour for analysis is $7: 15$ to $8: 15$. The PM peak hour for analysis is $4: 45$ to $5: 45$.
2.6 Existing Traffic Operations

The peak hour intersection turning movement counts developed in the previous section were analyzed in Synchro using the Highway Capacity Manual (HCM) module for both the AM and PM peak hours. Level of Service (LOS) is a qualitative measure used to relate the quality of traffic operations using letters A through F, where A represents free flow conditions and F represents extreme congestion. The operational analysis results for the study intersections are presented in Table 5. As shown in the table, all study intersections operate at LOS A for both peak hours, however congestion and delay increase as vehicles approach the Town of South Hill. Appendix

E contains more detailed results of intersection operations for each intersection analyzed along the corridor.

Existing heavy vehicle percentages vary throughout the corridor. Heavy vehicle percentages are highest east of VA 92 (Washington Street). Further information about heavy vehicle percentages and volumes along specific segments of the study corridor is presented in Figure 13.

Figure 14 and Figure 15 represent the Travel Time Ratio (TTR) across the corridor, where TTR is defined as the ratio of commuting travel time to free-flow travel time. For example, a TTR of 1.10 indicates that the peak-period travel time is 10% greater than free-flow travel time.

Table 5. Existing Level of Service

2018 Existing Conditions		
Intersection	AM LOS	PM LOS
Virginia Avenue \& Route 58	A	A
VA 92 \& Route 58	A	A
Kingdom Hall/US 1 \& Route 58	A	A
Theater Road \& Route 58	A	A
Main St(LaCrosse) \& Route 58	A	B
VA 641 (BrightLeaf Rd) \& Route 58	A	A

Figure 13. Heavy Vehicle Percentages

Figure 14. AM Travel Time Ratio

Figure 15. PM Travel Time Ratio

CHAPTER 3: FUTURE CONDITIONS

3.1 Development of Growth Rates

Traffic volumes along the US 58 Corridor are anticipated to continue growing. Both Brunswick and Mecklenburg Counties note the US 58 corridor as appropriate for industrial development and commercial development along the roadway in their comprehensive plans. Future development, including proposed ndustrial parks near the Town of La Crosse, increased commercial development near the I-85 interchange, and the continued development of facilities such as the Microsoft Data Center, will contribute to traffic growth.

In addition to local growth, US 58 is the second busiest east-west corridor that connects the Port of Virginia to critical markets and that commercial growth is anticipated to continue. Updated traffic rowth rates for the US 58 corridor were developed collaboratively using previous studies, historic raffic counts, the statewide travel demand model, and stakeholder input. The following sections outline the steps taken to develop the future 2040 traffic volumes
3.1.1 Historical Average Annual Traffic Volumes and Travel Patterns

Historical average annual traffic volumes help establish a trend along the corridor and highlight segments where traffic volume may increase. The study team used VDOT historic traffic counts for fifteen segments n the corridor. For the historic data, VDOT collects traffic counts from sensors in average daily traffic (ADT) volume. Table 5 outlines these historic traffic volumes from 2010 to 2018
3.1.2 Socio-Economic Data
his corridor plan derived estimated changes in population, households, and employment for the study area from the Statewide Travel Demand Model. Employment and population estimates are for the traffic analysis zones (TAZs) along the study corridor as shown in Figure 16. Table 6 summarizes the 2015 and 2040 estimates for population, household, and employment data from the Statewide Travel Demand Model for Brunswick and Mecklenburg Counties.
The socio-economic data from the Statewide Travel Demand Model shows an anticipated overall percent change for population, households, and employment in the study corridor TAZs. The corridor朝 quicker pace with a 20% increase in employment for Brunswick County and a 9% increase in employment
3.1.3 Annualized Background Growth Rate

A one percent non-compounded annual background growth rate was developed using the historic traffic counts, statewide traffic model, existing documentation, and coordination with VDOT and the local communities. This background growth rate represents the expected increase in traffic volumes that travel through the entire US 58 study area and do not have an origin or destination along the route

Table 6. Historical Average Daily Traffic

Historical ADT										
From	To	2010	2011	2012	2013	2014	2015	2016	2017	2018
East Brunswick County Line	Old Stage Rd	6,900	9,200	9,100	8,900	9,100	9,700	9,300	9,400	9,200
Old Stage Rd	US 58 BUS/Lawrenceville Plank Rd	12,000	11,000	11,000	10,000	10,000	11,000	9,400	9,500	9,300
US 58 BUS/Lawrenceville Plank Rd	Cattail Rd	9,700	9,300	9,200	8,700	8,800	9,500	8,500	8,600	8,400
Cattail Rd	Grandy Rd	8,600	8,200	8,100	8,200	8,400	9,000	8,900	9,000	8,800
Grandy Rd	Mecklenburg County Line	9,800	9,400	9,300	9,100	9,300	10,000	10,000	10,000	10,000
Mecklenburg County Line	Country Club Rd	11,000	10,000	10,000	11,000	11,000	12,000	11,000	11,000	11,000
Country Club Rd	Country Lane	14,000	16,500	17,000	17,500	17,500	16,000	21,000	23,500	25,000
Country Lane	Theater Rd	6,400	6,100	6,000	6,100	6,200	6,700	7,000	7,200	7,100
Theater Rd	US 1	9,000	8,800	8,600	8,900	9,000	9,500	10,000	11,000	11,000
US 1	Buggs Island Rd	6,200	6,100	5,900	5,900	6,100	6,900	7,400	7,700	7,700
Buggs Island Rd	VA 92	5,800	6,000	5,600	5,500	5,500	5,900	6,500	6,800	6,700
VA 92	US 15	4,600	4,600	4,400	4,600	4,600	5,200	5,600	5,600	5,500
US 15	Virginia Ave	5,100	5,000	4,900	4,800	4,800	4,900	5,200	5,300	5,100
Virginia Ave	West Mecklenburg County Line	6,500	6,000	6,500	6,500	6,500	6,000	6,500	6,900	6,900

within the study area. The trip generation for the study area (discussed in the following section) and this background growth rate will be added to the existing traffic volumes to develop the future 2040 traffic volumes.
3.2 Projected Future Growth (2040) and Traffic Volumes
3.2.1 Future Land Use and Approved Development Future land use was based on the socio-economic data in the travel demand model and stakeholder input. The study team looked at the projected population, household, and employment growth in the statewide travel demand model between 2015 and 2040 in TAZs within the study corridor. Figure 16 shows the TAZ growth along the corridor. Stakeholders reviewed these findings to assess the accuracy and provided feedback to the study team if adjustments to the assumed growth in certain TAZs were needed. These adjusted socio-economic datasets were used to estimate future traffic volumes in the study corridor and develop future traffic volumes at key intersections along the corridor.

Table 7. Employment and Population Growth Estimates

Jurisdiction (TAZs)	2015			2040			\% Change (2015-2040)		
	Population	Households	Employment	Population	Households	Employment	Population	Households	Employment
Brunswick County	10,621	3,641	4,669	11,278	3,848	5,584	6.2\%	5.7\%	19.6\%
Mecklenburg County	19,679	8,396	12,612	20,431	8,567	13,756	3.8\%	2.0\%	9.1\%
Total	30,300	12,037	17,281	31,709	12,415	19,340	4.7\%	3.1\%	11.9\%

3.2.2 Trip Generation and Distribution

The study team evaluated the TAZs along the study corridor that have a direct effect on the turning movement counts used for the existing and future analyses. Traffic was then distributed at the study intersections based on the existing turning movement counts. With consideration for location, potential growth areas, and infrastructure off US 58, engineering judgement was used to make reasonable adjustments to the trip distribution. The future trip generation traffic volumes were added to the calculated background growth for the corridor and then used in the year 2040 analyses. The future turning movement volumes, trip generation, and background growth are outlined in Appendix D.
3.2.3 Future (2040) Traffic Volumes

Traffic volumes for the year 2040 were developed based on the trip generation discussed in the previous section and the background growth of one percent for the through traffic along the US 58 corridor. The projected 2040 volumes at various points within the study area are listed in Figure 16.

Table 8. Future Traffic Voumes

Future Traffic Volumes			
From	To	$\mathbf{2 0 1 8}$	$\mathbf{2 0 4 0}$
East Brunswick County Line	Old Stage Rd	9,400	11,500
Old Stage Rd	US 58 BUS/Lawrenceville Plank Rd	9,500	11,600
US 58 BUS/Lawrenceville Plank Rd	Cattail Rd	8,600	10,500
Cattail Rd	Grandy Rd	9,000	11,000
Grandy Rd	Mecklenburg County Line	10,000	12,200
Mecklenburg County Line	Country Club Rd	11,000	13,400
Country Club Rd	Country Lane	23,500	28,700
Country Lane	Theater Rd	7,200	8,800
Theater Rd	US 1	11,000	13,400
US 1	Buggs Island Rd	7,700	9,400
Buggs Island Rd	VA 92	6,800	8,300
VA 92	US 15	5,600	6,800
US 15	Virginia Ave	5,300	6,500
Virginia Ave	West Mecklenburg County Line	6,900	8,400

Figure 16. Traffic Analysis Zone Growth

US 58 ARTERIAL PRESERVATION PLAN

CHAPTER 4: FUTURE (2040) TRAFFIC CONDITIONS

4.1 Future Traffic Operations

The 2040 future year operational analyses for the US 58 study intersections were performed using Synchro in accordance with VDOT's Traffic Operations and Safety Manual (TOSAM). Additional analysis was conducted in the Town of South Hill which included recommendations for the I-85 interchange. A summary of the additional analysis in the Town of South Hill is included in Appendix F. Although it is not known when the full build-out of the future land use will occur, the operational analysis for the 2040 scenarios includes the future traffic volumes for the full build-out of development to maximize the project life span for the recommended improvements. Two future traffic condition scenarios were nalymed. first, he nobuill scenaio assumes thas 88 . assumes improvemsis wilts of the
4.2 Future No-Build Traffic Operations and Deficiencies

Future traffic volumes, along with the background growth for through-vehicles, would have minimal impacts on most of the corridor based on the 2040 No-Build scenario. However, the Town of South Hill and La Crosse will experience delays up to LOS C in the AM and PM peak hours. Conventional signalized and La Crosse will experience delays up to tos in the AM and PM peak hours. Conventionaf signalized and at unsignalized intersections, the through-movements along US 58 would not allow large enough gaps in traffic for turning movements to occur. Crashes would increase due to queue lengths extending into mainline traffic and the increases in stop-and-go traffic due to more congestion.
4.3 Results of Operational Analyses for Recommended Improvements Chapter 5 details the recommended improvements, operations, and safety benefits of the recommendations. Although all the study intersections operated well in the future, recommendations were developed that focused focused on improving the safety of these intersections. The analysis was conducted to ensure that both safety and capacity would be satisfactory.
Recommendations consist mainly of innovative intersections concepts. Some of the recommendations include two or three intersections that function together as one system. Synchro does not currently have a method to analyze innovative intersections; however, Chapter 23 of the Highway Capacity Manual outlines a methodology for calculating delays and LOS by using travel time and the appropriate delay(s) through the innovative intersections. The HCM method provides a better way of comparing innovative intersections with the traditional intersection configurations that occupy the corridor today. All recommended improvements maintain an acceptable level of service of LOS C or better.

Table 9. Future Traffic Operations: Virginia Avenue and Route 58

Table 10. Future Traffic Operations: VA 92 and Route 58

Intersection	Scenario	Overall Delay (LOS)	Delay per Lane Group by Approach (sec/veh) (Level of Service)											
			Eastbound			Westbound			Northbound			Southbound		
			LT	тH	RT	LT	тH	RT	LT	тH	RT	LT	TH	RT
VA 92 \& Route58	AM Peak Hour													
	$\begin{gathered} 2018 \\ \text { Existing } \end{gathered}$	3.3	7.9	0.0	0.0	7.7	0.0	0.0	11.1	11.1	11.1	11.8	11.8	11.8
			A	A	A	A	A	A	B	B	B	B	B	B
		A	1.4 (A)			0.3 (A)			11.1 (B)			11.8 (B)		
	$\begin{gathered} 2040 \text { No } \\ \text { Build } \end{gathered}$	3.0	8.1	0.0	0.0	7.9	0.0	0.0	11.8	11.8	11.8	12.8	12.8	12.8
			A	A	A	A	A	A	B	B	B	B	B	B
		A	1.1 (A)			0.4 (A)			11.8 (B)			12.8 (B)		
	$\begin{aligned} & 2040 \\ & \text { Build } \end{aligned}$	3.2	8.0	0.0	0.0	12.0	0.0	0.0	N/A	N/A	9.2	13.6	21.3	9.3
			A	A	A	A	A	A			A	B	C	A
		A	1.1 (A)			0.5 (A)			9.2 (A)			14.6 (B)		
	PM Peak Hour													
	$\begin{gathered} 2018 \\ \text { Existing } \end{gathered}$	4.3	8.0	0.0	0.0	7.5	0.0	0.0	11.0	11.0	11.0	11.4	11.4	11.4
			A	A	A	A	A	A	B	B	B	B	B	B
		A	1.0 (A)			0.1 (A)			11.0 (B)			11.4 (B)		
	$\begin{aligned} & 2040 \text { No } \\ & \text { Build } \end{aligned}$	3.9	8.3	0.0	0.0	7.7	0.0	0.0	11.7	11.7	11.7	12.4	12.4	12.4
			A	A	A	A	A	A	B	B	B	$12.4 \text { (B) }$		B
		A	0.8 (A)			0.1 (A)			11.7 (B)			12.4 (B)		
	$\begin{aligned} & 2040 \\ & \text { Build } \end{aligned}$	3.6	8.8	0.0	0.0	12.0	0.0	0.0	N/A	N/A	9.0	13.0	22.3	10.3
			A	A	A	A	A	A			A	B	C	B
		A	0.9 (A)			0.2 (A)			9.0 (A)			12.8 (B)		

Table 11. Future Traffic Operations: Kingdom Hall/US 1 and Route 58

Intersection	Scenario	Overall Delay (LOS)	Delay per Lane Group by Approach (sec/veh) (Level of Service)											
			Eastbound			Westbound			Northbound			Southbound		
			LT	тH	RT	LT	тH	RT	LT	TH	RT	LT	TH	RT
Kingdom Hall/US 1 \& Route 58	AM Peak Hour													
	$\begin{aligned} & 2018 \\ & \text { Existing } \end{aligned}$	2.7	0.0	0.0	0.0	8.3	0.0	0.0	11.1	11.1	11.1	0.0	0.0	0.0
			A	A	A	A	A	A	B	B	B	A	A	A
		A	0.0 (A)			1.3 (A)			11.1 (B)			0.0 (A)		
	$\begin{gathered} 2040 \text { No } \\ \text { Build } \end{gathered}$	3.1	0.0	0.0	0.0	8.6	0.0	0.0	11.8	11.8	11.8	0.0	0.0	0.0
			A	A	A	A	A	A	B	B	B	A	A	A
		A	0.0 (A)			1.2 (A)			11.8 (B)			0.0 (A)		
	2040			0.0	0.0	8.3	0.0	0.0	13.4	N/A	10.8	N/A	N/A	0.0
		3.0	N/A	A	A	A	A	A	B		B			A
		A	0.0 (A)			1.1 (A)			11.3 (B)			0.0 (A)		
	PM Peak Hour													
	$\begin{gathered} 2018 \\ \text { Existing } \end{gathered}$	2.2	0.0	0.0	0.0	8.6	0.0	0.0	11.2	11.2	11.2	0.0	0.0	0.0
			A	A	A	A	A	A	B	B	B	A	A	A
		A	0.0 (A)			0.0 (A)			11.2 (A)			0.0 (A)		
	$\begin{aligned} & 2040 \text { No } \\ & \text { Build } \end{aligned}$	2.6	0.0	0.0	0.0	8.9	0.0	0.0	11.7	11.7	11.7	0.0	0.0	0.0
			A	A	A	A	A	A	B	B	B	A	A	A
		A	0.0 (A)			2.1 (A)			11.7 (B)			0.0 (A)		
	$\begin{aligned} & 2040 \\ & \text { Build } \end{aligned}$			0.0	0.0	8.8	0.0	0.0	16.5	N/A	10.6	N/A	N/A	0.0
		2.6	N/A	A	A	A	A	A	C		B			A
		A	0.0 (A)			2.1 (A)			11.4 (B)			0.0 (A)		

Table 12. Future Traffic Operations: Theater Road and Route 58

Intersection	Scenario	Overall Delay (LOS)	Delay per Lane Group by Approach (sec/veh) (Level of Service)											
			Eastbound			Westbound			Northbound			Southbound		
			LT	TH	RT									
Theater Road \& Route 58	AM Peak Hour													
	$\begin{aligned} & 2018 \\ & \text { Existing } \end{aligned}$		9.8	0.0	0.0	7.8	0.0	0.0	19.2	19.2	19.2	24.1	24.1	24.1
		3.4	A	A	A	A	A	A	c	c	c	c	C	C
		A	5.1 (A)			0.0 (A)			19.2 (C)			24.1 (C)		
	$\begin{aligned} & 2040 \text { No } \\ & \text { Build } \end{aligned}$	3.0	10.3	0.0	0.0	8.2	0.0	0.0	22.9	22.9	22.9	28.4	28.4	28.4
			B	B	B	A	A	A	c	C	C	D	D	D
		A	4.2 (B)			0.0 (A)			22.9 (C)			28.4 (D)		
	$\begin{aligned} & 2040 \\ & \text { Build } \end{aligned}$	3.0	10.3	0.0	0.0	8.2	0.0	0.0	22.9	22.9	22.9	28.4	28.4	28.4
			B	B	B	A	A	A	C	C	C	D	D	D
		A	4.2 (B)			0.0 (A)			22.9 (C)			28.4 (D)		
	PM Peak Hour													
	$\begin{gathered} 2018 \\ \text { Existing } \end{gathered}$	3.0	8.4	0.0	0.0	8.3	0.0	0.0	15.9	15.9	15.9	18.2	18.2	18.2
			A	A	A	A	A	A	C	C	C	C	C	C
		A	3.1 (A)			0.1 (A)			15.9 (C)			18.2 (C)		
	$\begin{aligned} & 2040 \text { No } \\ & \text { Build } \end{aligned}$	2.6	8.9	0.0	0.0	8.7	0.0	0.0	18.5	18.5	18.5	21.2	21.2	21.2
			A	A	A	A	A	A	C	C	C	C	C	C
		A	2.7 (A)			0.1 (A)			18.5 (C)			21.2 (C)		
	$\begin{aligned} & 2040 \\ & \text { Build } \end{aligned}$		8.9	0.0	0.0	8.7	0.0	0.0	18.5	18.5	18.5	21.2	21.2	21.2
		2.6	A	A	A	A	A	A	C	C	C	C	C	C
		A	2.7 (A)			0.1 (A)			18.5 (C)			21.2 (C)		

Table 13. Future Traffic Operations: Main Street (LaCrosse) and Route 58

Intersection	Scenario	Overall Delay (LOS)	Delay per Lane Group by Approach (sec/veh) (Level of Service)											
			Eastbound			Westbound			Northbound			Southbound		
			LT	тH	RT	LT	TH	RT	LT	тH	RT	LT	TH	RT
$\begin{gathered} \text { Main } \\ \text { St(LaCrosse) \& } \\ \text { Route } 58 \end{gathered}$	AM Peak Hour													
	$\begin{gathered} 2018 \\ \text { Existing } \end{gathered}$	8.7	36.0	5.2	4.7	26.5	5.6	4.5	25.3	25.3	25.3	21.0	21.0	21.0
			D	A	A	c	A	A	c	C	c	c	c	c
		A	6.2 (A)			5.8 (A)			25.3 (C)			21.0 (C)		
	$\begin{aligned} & 2040 \text { No } \\ & \text { Build } \end{aligned}$	14.1	157.7	8.5	7.5	44.1	10.2	6.9	27.6	27.6	27.6	18.3	18.3	18.3
			F	A	A	D	B	A	C	C	c	B	B	B
		B	12.9 (B)			10.6 (B)			27.6 (C)			18.3 (B)		
	2040 Build	6.6	59.8	4.8	0.3	26.1	5.8	0.0	16.1	16.1	16.1	30.5	25.0	13.7
			A	A	A	B	A	A	B	B	B	c	C	B
		A	5.4 (A)			6.1 (A)			16.1 (B)			16.7 (B)		
	PM Peak Hour													
	$\begin{gathered} 2018 \\ \text { Existing } \end{gathered}$	12.5	64.0	7.3	6.5	28.8	7.9	6.6	26.0	26.0	26.0	18.9	18.9	18.9
			E	A	A	C	A	A	C	C	c	B	B	B
		B	11.5 (B)			8.1 (A)			26.0 (C)			18.9 (B)		
	$\begin{aligned} & 2040 \text { No } \\ & \text { Build } \end{aligned}$	22.2	81.9	10.2	9.2	42.3	12.1	8.7	66.3	66.3	66.3	18.0	18.0	18.0
			F	B	A	D	B	A	E	E	E	B	B	B
		c	14.1 (B)			12.5 (B)			66.3 (E)			18.0 (B)		
	2040 Build	10.9	62.1	7.1	0.3	27.4	7.1	0.0	25.1	25.1	25.1	27.0	20.2	8.9
			F	A	A	B	A	A	C	C	C	C	C	B
		B	8.1 (A)			7.3 (A)			25.1 (C)			12.6 (B)		

Table 14. Future Traffic Operations: VA 641 (Bright Leaf Road) and Route 58

Intersection	Scenario	Overall Delay (LOS)	Delay per Lane Group by Approach (sec/veh) (Level of Service)												
			Eastbound			Westbound			Northbound			Southbound			
			LT	TH	RT										
VA 641 (BrightLeaf Rd) \& Route 58	AM Peak Hour														
	$\begin{gathered} 2018 \\ \text { Existing } \end{gathered}$		8.6	0.0	N/A	N/A	0.0	0.0	N/A			10.8	N/A	10.8	
			A	A			A	A				B		B	
		A	2.1 (A)			0.0 (A)						10.8 (B)			
	$\begin{gathered} 2040 \text { No } \\ \text { Build } \end{gathered}$		9.1	0.0	N/A	N/A	0.0	0.0	N/A			11.7	N/A	11.7	
		1.8	A	A			A	A				B		B	
		A	2.0 (A)			0.0 (A)							1.7 (B)		
	$\begin{aligned} & 2040 \\ & \text { Build } \end{aligned}$		9.1	0.0	N/A	N/A	0.0	0.0	N/A			11.7	N/A	10.0	
		0.9	A	A			A	A				B		B	
		A	0.3 (A)			0.0 (A)						10.0 (B)			
	PM Peak Hour														
	$\begin{gathered} 2018 \\ \text { Existing } \end{gathered}$		8.8	0.0	N/A	N/A	0.0	0.0	N/A			11.2	N/A	11.2	
		1.4	A	A			A	A				B		B	
		A	0.8 (A)			0.0 (A)						11.2 (B)			
	$\begin{aligned} & 2040 \text { No } \\ & \text { Build } \end{aligned}$		9.4	0.0	N/A	N/A	0.0	0.0	N/A		/A	12.5	N/A	12.5	
		1.6	A	A			A	A			B	B			
		A	1.0 (A)			0.0 (A)					12.5 (B)				
	$\begin{aligned} & 2040 \\ & \text { Build } \end{aligned}$		9.2	0.0	N/A	N/A	0.0	0.0	N/A				12.6	N/A	10.7
		1.6	A	A			A	A				B	B		
		A	0.9 (A)			0.0 (A)						11.6 (B)			

CHAPTER 5: ALTERNATIVES AND RECOMMENDATIONS

5.1 US 58 Corridor Recommendations

Future traffic volumes show that the US 58 corridor needs improvements to maintain capacity and improve safety. The majority of these improvements are needed to maintain regional growth and improve roadway safety. Additional improvements such as crossover closings may be implemented mmediately to increase safety through access management. Based on capacity analyses of current and future conditions and a review of current corridor infrastructure, a "toolbox" of improvements was developed for the US 58 study area. These include:

- Remove existing crossover (based on inadequate spacing/grade/etc.)
- Upgrade existing crossover to meet VDOT standards
to allow only certain movements;
- Ins
- Improve shoulder widths to meet VDOT requirements

Alternative intersections and access management techniques were evaluated during the development of recommendations. Below is a list of alternative intersection designs that are included in the VDOT Arterial Preservation Plan toolbox that were evaluated as potential recommendations. Some of the alternative designs were not suitable for certain locations due to the geometric constraints, concept's principles, associated costs, and/or Right-of-Way limitations. The concepts listed below were evaluated recommendation.

- Median U-turn Intersection (MUT)
- Restricted Crossing U-turn Intersection (RCUT)
- Continuous Green-T (CGT)
- Quadrant Roadway (QR)

Detailed information on each of these concepts is available on VDOT's Innovative Intersections website located at http://www.virginiadot.org/innovativeintersections/.
It is well documented that as the number of access points increase along a corridor, the running speed decreases and the number of crashes increase. Given that the study segments of US 58 are of vital importance to the state and region, it is important to ensure the safety and throughput capacity of the corridor.

Recommendations were developed using the crash evaluation and analysis of the future volumes from both planned and potential developments along the study corridor. Project stakeholders and the public were engaged throughout the project process to identify the most preferred recommendations. These recommendations are presented in Appendix A. Table 15 contains a suggested ranking of the recommendations based on crash history and the VDOT Potential for Safety Improvements (PSI) database. Recommendation locations are highlighted on corridor aerial photos, with the identification circle indicating the type of recommendation. A green circle indicates no recommendation, a red circle circle indicates a major improvement. Recommendations are denoted with C\# for crossovers and I\# for intersections. The written recommendation description is available by finding the corresponding C\# or I\# in the right-hand information box. For complex recommendations, the description will refer to a
figure with a detailed project sketch. Cost estimates were developed using the VDOT Transportation and Mobility Planning Division (TMPD) Cost Estimate Spreadsheet tool and the figures include the range of costs in 2019 dollars for each recommendation.
It is intended that the recommendations presented in Appendix A will accommodate the full build-out of development identified in the future land use as well as the increased vehicular through-put on US 58 As part of this US 58 Arterial Preservation Plan, it is recommended that no additional traffic signals be

Additional shoulder widths with safety edges, when applicable, are recommended to be constructed in areas that do not met minimum design standards. All shoulders should be paved to the VDOT design standard of eight fet or better to accommodate disabled vehicles, vehicles entering and exiting residential and commercial driveways, and bicyclists. In areas where the existing grade does not support the minimum shoulder requirements, guardrail should be installed.

5.2 Possible Funding Sources

Implementation of the recommended improvements will require funding sources. The VDOT SMART SCALE Program is a process that invests in projects that meet the most critical transportation needs in the state. Projects are evaluated based on improvements in certain categories such as congestion and safety. At the corridor level, more specific strategies and operational improvements can be assessed in studies and implemented using a variety of funding sources, including Federal funding streams such as the Surface Transportation Program (STP), National Highway System (NHS) funds, the Congestion Mitigation and Air Quality Improvement (CMAQ) Program, Revenue Sharing, Highway Safety lmprovement Program (HSIP), as well as through state or local funding or other discretionary funding sources. For large projects, particularly capacity-adding projects, demand management, and operational strategies should also be analyzed for incorporation into the project as part of the project development process. The complex recommendations presented in Appendix A, Figures 5, 12, 13, 19, 23, 24, 25, 26, 28, 35, and 38 include improvement types that correspond with the categories required for specific funding sources.

				Table 15. Sug	ested Priority	US 58 Recomm	mendations						
Recommendation Figure	Intersecting US 58 Roadway	Jurisdiction	High Cost (\$ Millions)	Total Crashes (2013-2018)	VTrans Needs Met	Economic Development Support	Congestion (Existing LOS)	Crash Rank	Congestion Rank	ED Rank	Total Score	Cost/Score	Rank
24	Country Ln	Town of South Hill	3.1	19	2	Y	c	27	35	31	30.45	9.82	1
26	Roundabout - Eastern Corporate Limits	Town of South Hill	6	20	2	Y	A	28	1	31	27.35	4.56	2
26	Cycle/Peebles - Eastern Corp	Town of South Hill	2.3	43	2	Y	B	33	34	31	32.15	13.98	3
28	N Main St	Town of La Crosse	1.1	16	1	N	A	26	1	1	8.5	7.73	4
32	Robinson Ferry Rd	Brunswick County	1	10	1	N	A	21	1	1	7	7.00	5
29	Regional Airport Rd	Mecklenburg County	1	7	1	N	A	18	1	1	6.1	6.10	6
35	Cattail Dr	Town of Lawrenceville	3.4	13	1	Y	A	25	1	31	18.7	5.50	7
41	Freemans Crossing Rd	Brunswick County	1.3	10	1	N	A	21	1	1	7	5.38	8
5	Virginia Ave	Town of Clarksville	1.4	6	1	N	A	16	1	1	5.5	3.93	9
17	Baskerville Rd	Mecklenburg County	1.1	4	1	N	A	12	1	1	4.3	3.91	10
32	Evans Creek Rd	Brunswick County	2.2	12	1	N	A	23	1	1	7.6	3.45	11
10	Skipwith Rd	Town of Boydton	1.6	6	1	N	A	16	1	1	5.5	3.44	12
38	Bright Leaf Rd/Airport Dr	Brunswick County	2.3	12	1	N	A	23	1	1	7.6	3.30	13
33	Pleasant Grove Rd	Brunswick County	2.1	7	1	N	A	18	1	1	6.1	2.90	14
21	Goods Ferry Rd	Mecklenburg County	1.5	4	1	N	A	12	1	1	4.3	2.87	15
2	Cherry Hill Church Rd	Mecklenburg County	1	3	1	N	A	7	1	1	2.8	2.80	16
3	Clarksville Rd	Mecklenburg County	1	3	1	N	A	7	1	1	2.8	2.80	17
12	Washingston St	Town of Boydton	1.9	5	1	N	A	15	1	1	5.2	2.74	18
2	Buffalo Springs Rd	Mecklenburg County	1	2	1	N	A	5	1	1	2.2	2.20	19
Segment	Landfill Rd to Buggs Island Rd	Mecklenburg County	5	24	1	N	A	30	1	1	9.7	1.94	20
Segment	Union Woods Rd to Pleasant Grove Rd	Brunswick County	5.7	50	1	N	A	34	1	1	10.9	1.91	21
Segment	Evans Creek Rd to Grandy Rd	Brunswick County	7.5	64	1	N	A	35	1	1	11.2	1.49	22
Segment	Branch Rd to Gholson Rd	Brunswick County	6.1	20	1	N	A	28	1	1	9.1	1.49	23
Segment	Airport Dr to Old Stage Rd	Brunswick County	7.2	35	1	N	A	32	1	1	10.3	1.43	24
14	Hayes Mill Rd	Mecklenburg County	1.7	2	1	N	A	5	1	1	2.2	1.29	25
30	Dornia Ave	Brunswick County	3.8	4	1	N	A	12	1	1	4.3	1.13	26
25	1-85	Town of South Hill	28	30	2	Y	A	31	1	31	28.25	1.01	27
2	Tabernacle Rd	Mecklenburg County	1	1	1	N	A	1	1	1	1	1.00	28
6	Shiney Rock Rd	Town of Clarksville	1	1	1	N	A	1	1	1	1	1.00	29
10	Jefferson St	Town of Boydton	3.1	3	1	N	A	7	1	1	2.8	0.90	30
8	Tower Rd	Mecklenburg County	1.3	1	1	N	A	1	1	1	1	0.77	31
30	Main St	Brunswick County	3.8	3	1	N	A	7	1	1	2.8	0.74	32
13	US 58 BUS	Town of Boydton	1.4	1	1	N	A	1	1	1	1	0.71	33
19	US 1	Mecklenburg County	9.7	9	1	N	A	20	1	1	6.7	0.69	34
10	Mayfield Dr	Town of Boydton	4.6	3	1	N	A	7	1	1	2.8	0.61	35

Scores reflect weighting by SMART SCALE area type categories.
Although the score of Cycle/Peebles - Eastern Corp Limits South ill is higher, the roundabout must occur first before pursuing this option. This has been reflected in the recommended priority.

APPENDICES

Appendix A: US 58 Arterial Preservation Plan Recommendations...A-1
Appendix B: Field Review... A-45
Appendix C: Infrastructure Inventory ...A-57
Appendix D: US 58 Intersection Volumes..A-81
Appendix E: US 58 Intersection Operations ..A-85
Appendix F: Town of South Hill Memorandum ..A-89

正

APPENDIX A: US 58 ARTERIAL PRESERVATION PLAN RECOMMENDATIONS

正

US 58 Arterial Preservation Plan
Figure 2
Intersections \& Median Crossovers

Mecklenburg County

I-\# - Intersection \#

Intersection 4: Tabernacle Rd with US 58
Recommendation: Reconfigure intersection to directional median permitting left turns and U-Turns from westbound US 58 . Lengthen existing westbound left-turn lane and onstruct eastbound right-turn lane on US 58
Cost: $\$ 0.4 \mathrm{M}$ to $\$ 0.6 \mathrm{M}$
Intersection 5: Buffalo Springs Rd with US 58
Recommendation: Reconfigure intersection to directional median permitting left turns and U-Turns from eastbound US 58. Lengthen existing eastbound left-turn and westbound right-turn lanes on US 58
cost: $\$ 0.4 \mathrm{M}$ to $\$ 0.6 \mathrm{M}$
tersection 6: Hite Dr with US 58
Recommendation: Lengthen all existing turn lanes and onstruct eastbound right-turn lane on US 58 Cost: $\$ 0.5 \mathrm{M}$ to $\$ 0.8 \mathrm{M}$

Intersection 7: Lake Ridge Dr with US 58
Recommendation: Lengthen all existing turn lanes and construct westbound right-turn lane on US 58. Cost: $\$ 0.5 \mathrm{M}$ to $\$ 0.8 \mathrm{M}$

Intersection 8: Cherry Hill Church Rd with US 58

 Recommendation: Reconfigure intersection to directional median permitting left turns and U-Turns from westbound US 58. Lengthen existing westbound left-turn lane and onstruct eastbound right-turn lane on US 58 Cost: $\$ 0.4 \mathrm{M}$ to $\$ 0.6 \mathrm{M}$ntersection 9: Bull Rd with US 58
Recommendation: Lengthen all existing turn lanes and
Cost: $\$ 0.6 \mathrm{M}$ to $\$ 1.0 \mathrm{M}$
Crossover 4:
Recommendation: Lengthen all existing turn lanes on US 58. Consolidate access along eastbound US 58.

Cost: $\$ 0.5 \mathrm{M}$ to $\$ 0.7 \mathrm{M}$
O $\begin{aligned} & \text { No Recommendation } \\ & \text { O Recommended Removal }\end{aligned} \quad$ O Major Improvement
Major Improvement

US 58 Arterial Preservation Plan
Figure 10
Intersections \& Median Crossovers Mecklenburg County
I-\# - Intersection \#

rossover 18 :

Recommendation: No recommendation Cost: Not Applicable

Intersection 27: Mayfield Dr with US 58
Recommendation: Reconfigure intersection to restricted
crossing U-turn (RCUT). Construct U-turn area west of main intersection
Cost: $\$ 3.5 \mathrm{M}$ to $\$ 4.6 \mathrm{M}$
ntersection 28: Jefferson St with US 58
Recommendation: Reconfigure intersection to restricted crossing U-turn (RCUT). Reconfigure Crossover \#19 to -turn area.
Cost: $\$ 2.2 \mathrm{M}$ to $\$ 3.1 \mathrm{M}$

rossover 19:

Recommendation: Reconfigure crossover to U-turn area for Intersection \#28. Permit eastbound US 58 left-turn movements.
Cost: See Intersection 28: Jefferson St with US 58
ecommendation: Reconfigure crossover to directional median to permit lefts in only from
und US 58
Cost: $\$ 0.3 \mathrm{M}$ to $\$ 0.4 \mathrm{M}$
ntersection 29: Skipwith Rd with US 58
Recommendation: Reconfigure intersection to restricted crossing U-turn (RCUT). Construct U-turn area east and west of main intersection.
Cost: $\$ 1.1 \mathrm{M}$ to $\$ 1.6 \mathrm{M}$

Route 58 Arterial Management Plan Figure 12
Intersection \#30: US 58 and Washington St Mecklenburg County

Recommendation: Reconfigure intersection of US 58 and Washington St to Continuous Green-T (CGT). Construct U-turn area west of main intersection to permit southbound movements from Washington St to cross US 58. Extend eastbound right-turn lane to U-turn area and reconstruct existing turn-lanes on US 58 to VDOT Design Standards

ROW Impacts: All improvements are within the ROW
Improvement Type: Safety, Travel Time Preservation

Traffic Operations \& Safety:

Traffic
Operations
Reduced delay times for vehicles traveling eastbound on US 58 from southbound Washington St

Reduced conflict points where vehicles cross paths. Reduced risk St onto US 58

Cost: $\$ 1.2 \mathrm{M}$ to $\$ 1.9 \mathrm{M}$

Route 58 Arterial Management Plan Figure 13
Intersection \#31: US 58 and US 58 BUS Mecklenburg County

Recommendation: Reconfigure main intersection of US 58 and US 58 BUS to Continuous Green-T (CGT). Reconstruct existing turn-lanes on US 58 to meet VDOT Design Standards.

ROW Impacts: All improvements are within the ROW
Improvement Type: Safety, Travel Time Preservation

Traffic Operations \& Safety:

Traffic Operations

Reduced delay times for vehicles traveling westbound on US 58 from northbound Reese Ln

Reduced conflict points where vehicles cross paths. Reduced risk of angle crashes from Reese Ln onto westbound US 58

US 58 Arterial Preservation Plan Figure 14

Intersections \& Median Crossovers Mecklenburg County
I-\# - Intersection \#
intersection 33: Ridge Rd with US 58
Recommendation: Lengthen all existing eastbound turn Recommendatio
Cost: $\$ 0.3 \mathrm{M}$ to $\$ 0.5 \mathrm{M}$

Crossover 23:

Recommendation: Reconfigure crossover to U-turn area for Intersection \#34. Permit westbound US 58 left-turn movements.
ost: $\$ 0.3 \mathrm{M}$ to $\$ 0.4 \mathrm{M}$
itersection 34: Hayes Mill Rd with US 58 Recommendation: Reconfigure intersection to restricted rossing U-turn (RCUT). Reconfigure Crossover \#23 to -turn area and construct U-turn area east of main tersection.
Cost: $\$ 0.8 \mathrm{M}$ to $\$ 1.3 \mathrm{M}$

Crossover 24

Recommendation: No recommendation Cost: Not Applicable

Recommendation: Remove crossover Cost: $\$ 0.2 \mathrm{M}$ to $\$ 0.3 \mathrm{M}$

ecommendation: No recommendation Cost: Not Applicable

US 58 Arterial Preservation Plan Figure 15

Intersections \& Median Crossovers

Mecklenburg County

I-\# - Intersection \#

Cossover 27.

ecommendation: No recommendation
Cost: Not Applicable
insection 35: Landfill Rd with US 58
Recommendation: Lengthen existing right-turn lanes on US 58.
\$0.7M

Crossover 28:

Recommendation: No recommendation Cost: Not Applicable

US 58 Arterial Preservation Plan Figure 17
Intersections \& Median Crossovers
Mecklenburg County
I-\# - Intersection \#

Crossover 35.

Recommendation: Remove crossover
Cost: $\$ 0.2 \mathrm{M}$ to $\$ 0.3 \mathrm{M}$

Crossover 36 .

Recommendation: Remove crossover Cost: $\$ 0.2 \mathrm{M}$ to $\$ 0.3 \mathrm{M}$
ntersection 37: Baskerville Rd with US 58
Recommendation: Reconfigure intersection to directional median permitting left turns and U-Turns from westbound US 58. Construct eastbound right-turn lane on US 58 Cost: $\$ 0.7 \mathrm{M}$ to $\$ 1.1 \mathrm{M}$
itersection 38: Baskerville Rd with US 58
Recommendation: Reconfigure intersection to directional median permitting left turns and U-Turns from eastbound US 58
Cost: \$0.7M to \$1.1M

Crossover 37:

Recommendation: No Recommendations Cost: Not Applicable

ntersection 39: Cedar Grove Rd with US 58

Recommendation: Construct eastbound right-turn lane on US5
Cost: $\$ 0.1 \mathrm{M}$ to $\$ 0.2 \mathrm{M}$
Crossover 38:
Recommendation: No recommendation
Cost: Not Applicable
Crossover 39:
ecommendation: No recommendatio
Cost: Not Applicable

US 58 Arterial Preservation Plan
Figure 18
Intersections \& Median Crossovers

Mecklenburg County

I-\# - Intersection \#

Intersection 40: Camp Rd with US 58
Recommendation: Lengthen all existing turn lanes on US 58
Cost: Not Applicable

Crossover 40:

Recommendation: No recommendation
Cost: Not Applicable
ntersection 41: US 1 with US 58 Recommendation: See Figure 19 Cost: $\$ 6.9 \mathrm{M}$ to $\$ 9.7 \mathrm{M}$

Intersection 42: Smith Cross Rd with US 58
Recommendation: Construct westbound left-turn lane and eastbound right-turn lane.
Cost: $\$ 2.2 \mathrm{M}$ to $\$ 3.1 \mathrm{M}$
Intersection 43: Union Level Rd with US 58 Recommendation: Reconfigure intersection to restricte crossing U-turn (RCUT). Construct U-turn area east and 9M

Intersection 44: Dockery Rd with US 58 Recommendation: Reconfigure intersection to restricted crossing U-turn (RCUT). Construct U-turn area east and main intersectio

Route 58 Arterial Management Plan

Figure 19

Intersection \#41: US 58 and US 1
Mecklenburg County
Recommendation: Realign US 1 north-east of existing intersection and reconfigure intersection of US 58 and US 1 to Continuous Green-T (CGT). Construct median between the eastbound and westbound lanes on US 58.

ROW Impacts: CGT is within existing ROW. Although VDOT owns some land east of existing US 58 alignmen the realignment may require additional ROW on the east side of US 58.

Improvement Type: Safety, Travel Time Preservation

Traffic Operations \& Safety:

Traffic
Operations

Reduced delay times for vehicles traveling westbound on US 58 from northbound US 1

Improved sight distance for all movements at the intersection. Reduced risk of angle crashes due to CGT and improved sight distance.

Cost: $\$ 6.9 \mathrm{M}$ to $\$ 9.7 \mathrm{M}$

Route 58 Arterial Management Plan
Figure 24
Intersection \#49: US 58 with Country Ln Town of South Hill
Recommendation: Reconfigure the existing intersection and traffic signal to a three-phase signal. Permit only through and right-turn movements on US 58. Permit only left and right-turn movements from US 58 BUS southbound onto US 58 and full movements from Country Ln northbound. Construct U-turn area west of existing intersection to permit movements destined to Country Ln from US 58 westbound or US 58 BUS
southbound. Remove existing I-85 off ramp onto US 58 BUS and construct continuous flow right-turn lane from US 58 westbound onto US 58 BUS. Eastbound US 58 left-turns to be managed at Maple Lane or interchange (depending on interchange configuration).
ROW Impacts: All improvements are within the ROW
Improvement Type: Congestion Mitigation, Economic Development, Safety, Travel Time Preservation

Operations:

2040 Future Delay (sec-LOS)	No Build	Build
AM	$24.6-\mathrm{C}$	$17.4-\mathrm{C}$
PM	$30.4-\mathrm{C}$	$20.4-\mathrm{C}$

Cost: $\$ 1.9 \mathrm{M}$ to $\$ 3.1 \mathrm{M}$

Route 58 Arterial Management Plan
Intersection \#54: N Main St with US 58 Mecklenburg County

Recommendation: Reconfigure the existing intersection and traffic signal to a two-phase signal. Permit only through and right-turn movements on US 58. Permit only right-turn movements from Country Club Rd onto US 58 and full movements from northbound N Main St to US 58. Reconfigure Crossover \#45 to U-turn area for vehicles destined eastbound US 58 or the Town of LaCrosse. Eastbound US 58 vehicles destined to Country Club Road can use existing Crossover \#46.

ROW Impacts: All improvements are within the ROW
Improvement Type: Safety, Travel Time Preservation

Traffic Operations \& Safety:

Traffic
Operations
Reduced delay times for vehicles traveling on US 58 and N Main St.

Significant reduction in risk of angle crashes and reduced risk of rear end crashes.

US 58 Arterial Preservation Plan
Figure 29
Intersections \& Median Crossovers Mecklenburg County
I-\# - Intersection \#

Crossover 47
ecommendation: lengthen existing westbound turn lane
O US 58
Cost: $\$ 0.4 \mathrm{M}$ to $\$ 0.6 \mathrm{M}$
Crossover 48:
Recommendation: Lengthen all existing turn lanes on US 58.
ost: \$0.4M to \$0.5M
Intersection 57: Regional Airport Rd with US 58
Recommendation: Reconfigure intersection to directional median permitting left turns and U-Turns from westbound US 58. Lengthen existing westbound left-turn lane and astbound right-urn lane on US 58
Cost: $\$ 0.5 \mathrm{M}$ to $\$ 0.9 \mathrm{M}$
Intersection 58: Brown Town Rd with US 58
ecommendation: Reconfigure intersection to directional median permitting left turns and U-Turns from eastbound US 58. Lengthen existing eastbound left-turn lane and westbound right-turn lane on US 58 Cost: $\$ 0.5 \mathrm{M}$ to $\$ 0.9 \mathrm{M}$

Cossover 49:

Recommendation: Remove crossover
Cost: $\$ 0.2 \mathrm{M}$ to $\$ 0.3 \mathrm{M}$

1

Route 58 Arterial Management Plan Figure 35
Intersection \#66: US 58 and Cattail Dr Mecklenburg County

Recommendation: Reconfigure Crossover \#72 with US 58 to a Continuous Green-T (CGT). Close north leg of Cattail Dr and permit right-in/right-out for the south leg. Improve Route 46/US 58 Interchange by extending westbound accelerations lanes and eastbound deceleration lanes

ROW Impacts: Proposed interparcel connection may require ROW acquisition.

Improvement Type: Safety

Traffic Operations \& Safety:

Reduced delay for vehicles entering and exiting Brunswick

Traffic Operations
fety

Square. Longer merge area for
Route 46 Interchange permits
merging at higher safer speeds
Reduced risk of angle crashes and conflicts with the Route 46 influence area. Longer
acceleration and deceleration lanes at the Route 46 interchange reduces the risk of rear end and sideswipe crashes

正

APPENDIX B: FIELD REVIEW

正

US 58 Field Review

Conducted: June 12, 2018 Objectives:
> Review roadway and intersection configurations
$>$ Identify deficiencies and areas of concern
$>$ Sight distance or steep grades
$>$ Identify unique roadway features
> Observe traffic operations

- Halifax / Mecklenburg County Line to US 58 Business (Virginia Ave.)
- Rolling terrain
- Intersection and crossovers with sub-standard turn lanes
- Mix of shoulder type
- Portions without a paved shoulder
- Widens to 4 ft (EB) and 8ft (WB) gravel shoulders
- Grade differentials between EB and WB at intersections and crossovers
- US 58 Business to US 15 Interchange
- Partial controlled access
- Close proximity of Rte. 723 intersection to interchange
- 8 ft paved shoulders

- US 15 Interchange to Rte. 92 (Washington St.)
- Level terrain
- 8ft paved shoulders
- Limited access section around Clarksville
- Some closely spaced intersections
- Rte. 92 Intersection controlled with flashers

- Limited sight distance for EB approach
- WB right-turn lane is sub-standard
- Rte. 92 (Washington St.) to Rte. 4 (Buggs Island Rd.)
- Numerous crossovers and increasing access on this segment
- Rte. 4 intersection has steep inclines on both US 58 approaches. May limit sight distance on side streets

- Rte. 4 (Buggs Island Rd.) to Western US 1 Intersection
- More rolling terrain - may be problematic for heavy vehicles
- Minor intersections with sight distance concerns
- Redundant crossovers
- Cross slope at US 1 intersection not ideal for trucks
- Western US 1 Intersection to Rte. 780 (Theater Rd.)
- TWLTL between US 1 intersections
- Increase in direct access to US 58
- Accel lane onto WB US 58 at eastern US 1 intersection appears short.
- Some sight distance concerns at Rte. 780
 intersection
- Rte. 780 (Theater Rd.) to Rte. 643 (E. Atlantic St.)
- 8' - 10' paved shoulders
- Minimal access and crossovers
- Rte. 643 intersection in close proximity to I-85 interchange
- I-85 / US 58 Interchange
- SB I-85 to WB US 58 has improper through movement pavement marking leading to a small gravel section in the median
- T-intersection for SB I-85 to WB US 58 may be problematic for trucks entering the roadway
- No turn lane or taper for WB US 58 to NB I-85

- I-85 Interchange to Rte. 621 (N. Main St.)
- Motorists cutting across EB US 58 from NB I-85 off ramp to entrance of Shell gas station. (Less than 600')
- Numerous access points and median crossovers
- Shaw St. / Cycle Ln. has a significant grade disparity between EB and WB US 58

- Rte. 621 intersection:
- Side street approaches have steep grades and sharp curves
- Lots of access points around intersection
- Rte. 621 (N. Main St.) to Town of Brodnax
- Inconsistent shoulder width and type
- Crossovers lacking turn lanes
- Rolling terrain

- Town of Brodnax

- TWLTL throughout
- Lots of direct access
- 4' grass / gravel shoulders
- Town of Brodnax to Rte. 644 (Robinson Ferry Rd.)

- Variable shoulder width and type
- Crossovers without turn lanes
- Sight distance concerns to some crossovers due to rolling terrain
- Sub-standard turn lanes and a cross slope through the intersection with Rte. 644

- Rte. 644 (Robinson Ferry Rd.) to Rte. 46 (Christanna Hwy)
- Crossovers without turn lanes
- Sight distance concerns to some crossovers due to rolling terrain
- 4' paved or gravel shoulders

- Rte. 46 (Christanna Hwy) to Rte. 641 (Bright Leaf Rd.)
- Limited Access until near Rte. 641
- Sub-standard turn lanes for crossovers on the eastern portion
- Rte. 641 intersection:
- Skewed intersection
- Wide median may make it difficult for trucks

- Rte. 641 (Bright Leaf Rd.) to Eastside Rd.
- Lots of commercial activity
- Redundant crossovers and many lack turn lanes
- Rte. 712 intersection:
- Controlled by overhead flashers
- Grade differential between EB and WB US 58 may be difficult to cross

- Eastside Rd. to Brunswick Co. Line
- Rolling Terrain
- Varying should types and widths

正

APPENDIX C: INFRASTRUCTURE INVENTORY

正

Infrastructure Inventory

Existing left turn lanes do not meet VDOT design requirements (storage length).

Existing left turn lanes do not meet VDOT design requirements. No US 58 right turn lanes. Grade differential.
339.7 Existing left turn lanes do not meet VDOT design requirements. Grade differential. requirements. No US 58 right turn lanes.

Existing left turn lanes do not meet VDOT design requirements. No US 58 right turn lanes.

Existing left turn lanes do not meet VDOT design requirements.
341.3

Existing left turn lanes do not meet VDOT design requirements. Truck U-Turn tire marks.

Existing left turn lanes do not meet VDOT design requirements. No eastbound US 58 right turn lane

Existing left turn lanes and southbound right turn lane do not meet VDOT design requirements. Ambulatory injury

Existing left turn lanes do not meet VDOT design requirements. Existing Eastbound US 58 Right turn lane does not meet VDOT design requirements. Ambulatory Injury requirements.

All Existing turn lanes do meet VDOT design requirements. Some vertical curve sight issues.

No left turn lanes exist at this median crossover

No left turn lanes exist at this median crossover.

All existing turn lanes do meet VDOT design requirements.

351.3

All existing turn lanes do meet VDOT design requirements. Ambulatory injury.

Existing turn lanes do meet VDOT design requirements. No US 58 right turn lanes.
Existing turn lanes do meet VDOT design requirements.

Existing turn lanes do meet VDOT design requirements.

All Existing turn lanes do not meet VDOT design requirements. No southbound and northbound right lanes.

All Existing left turn lanes do not meet VDOT design requirements. Ambulatory injury. No westbound left turn lane. Visible injury.
353.8

All existing turn lanes do meet the VDOT requirements.

Existing US 58 left turn lanes do meet VDOT design requirements.

Existing left turn lanes do meet VDOT design

Existing US 58 left turn lanes do not meet VDOT design requirements. Fatal injury.

All Existing US 58 turn lanes do meet VDOT design requirements, except for WB right turn lane is short

Existing US 58 left turn lanes do meet VDOT design requirements.

Existing US 58 left turn lanes do meet VDOT design requirements. Existing US 58 right turn lanes do meet VDOT design requirements.

Existing US 58 left turn lanes do meet VDOT design requirements.

Existing east bound US 58 left turn lanes do meet VDOT design requirements.

Existing east bound US 58 left turn lanes do meet VDOT design requirements.

Existing US 58 left turn lanes are TWLTL turn lanes.. requirements
358.3

Existing westbound US 58 left turn lanes do meet VDOT design requirements. (storage length).

Existing US 58 left turn lanes do not meet VDOT design requirements. Fatal injury in short distance after the crossover
Existing US 58 left turn lanes and eastbound right turn lane do meet VDOT design requirements. No westbound US 58 right lane. High crashes point in the intersection.

Existing US 58 left turn lanes do meet VDOT design requirements

Existing US 58 left turn lanes do not meet VDOT design requirements

Existing US 58 left turn lanes do not meet VDOT design requirements

Existing eastbound US 58 left turn lane does not meet VDOT design requirements.
367.0

Existing westbound US 58 left turn lane do meet VDOT design requirements
Existing westbound US 58 left turn lane does not meet VDOT design requirements.

Existing US 58 left turn lanes do meet VDOT design requirements. Visible crash.

Existing US 58 left turn lanes do meet VDOT design requirements

Existing US 58 left turn lanes do meet VDOT design requirements. Fatal crash

Existing US 58 left turn lanes do meet VDOT design requirements. Existing US 58 Westbound right turn lane does not meet VDOT design requirements.

369.2

Existing eastbound US 58 left turn lanes do meet VDOT design requirements

Existing eastbound US 58 left turn lane does meet VDOT design requirements. Begin TWLTL east of intersection.

Existing US 58 TWLTL left turn lanes. No US 58 right turn lanes. High rate of crashes.

Existing US 58 TWLTL left turn lanes. No US 58 right turn lanes. High rate of crashes. TWLTL inconsistent

Flashers-Intersection

Signalized Intersection

Unsignalized Intersection
\wedge
Median Crossovers

Inadequate intersection spacing per VDOT standards

Existing US 58 left turn lanes TWLTL (inconsistent)
Existing US 58 left turn lanes TWLTL (inconsistent).
This intersection has overhead flashers. Westbound on-ramp from US 1 (Eastern) acceleration lane too short. Ambulatory crashes.

Existing westbound US 58 left turn lane and all right turn lanes do not meet VDOT design requirements. Sight distance issue for north bound. High rate of crashes.
Existing US 58 left turn lanes do meet VDOT design requirements
Existing US 58 left turn lanes do meet VDOT design requirements. Existing eastbound US 58 right turn lane does not meet VDOT design requirements.

Existing US 58 left turn lanes do not meet VDOT design requirements. Existing US 58 eastbound right turn lane does not meet VDOT design requirements. High rate of crashes.

The intersection meets VDOT design requirements except for the distance between intersection and interchange ramp. High rate of visible injury crashes No US 58 left lanes. Fatal crashes.
376.6

Existing US 58 left turn lanes do meet VDOT design requirements. No US 58 right turn lanes
376.7

Existing US 58 left turn lanes do meet VDOT design requirements. Ambulatory injury crashes. Visible crash

Existing US 58 left turn lanes do meet VDOT design requirements. Existing eastbound US 58 right turn lane does meet VDOT design requirements. Multiple access points. Multiple ambulatory crashes
377.0

All exiting US 58 do meet the VDOT design requirements. Multiple access points. High rate of crashes.

Existing US 58 left turn lanes do meet VDOT design requirements.

Existing westbound US 58 right turn lane does not meet VDOT design requirements

Existing US 58 left turn lanes do not meet VDOT design requirements. Existing eastbound US 58 right turn lane does not meet VDOT design requirements requirements.

All existing US 58 left and right turn lanes do not meet VDOT design requirements. ((Access points))

Existing US 58 left turn lanes do meet VDOT design requirements.

Existing US 58 left turn lanes do meet VDOT design requirements.

Existing eastbound US 58 left turn lane does not meet VDOT design requirements. Fatal crash

All exiting US 58 turn lanes do not meet VDOT
requirements. High rate of crashes include fatal crashes
No US 58 left turn lanes.

No US 58 left turn lanes. Visible crash.

Existing US 58 eastbound left turn lane does not meet VDOT design requirements. No westbound US 58 left turn lane

No US 58 left turn lanes. . One Ambulatory injury crashe in this access point 394.5.

Exiting US 58 left turn lanes do not meet VDOT requirements. Exiting eastbound US 58 right turn lane does not meet VDOT requirements.
Existing westbound US 58 left turn lane does no meet VDOT requirements. No eastbound left turn lane.

Existing westbound US 58 left turn lane does no meet VDOT requirements. No US 58 eastbound left turn lane

Existing westbound US 58 left turn lane does no meet VDOT requirements. No US 58 eastbound left turn lane.

Exiting US 58 left turn lanes do not meet VDOT requirements. No US 58 right turn lanes. No US 58 right turn lanes. Grade differential on US 58 eastbound and westbound. High rate of crashes.

No US 58 left turn lanes. High rate of crashes at access

 point 398.4Exiting US 58 left turn lanes do not meet VDOT requirements.
399.6

No US 58 left turn lanes.

Existing westbound US 58 left turn lane does no meet VDOT requirements. No US 58 eastbound left turn lane

No US 58 left turn lanes.

Existing westbound US 58 left turn lane DOES meet VDOT requirements. No US 58 eastbound left turn lane. Existing eastbound US 58 right turn lane DOES meet VDOT requirements.
requirements. No US 58 westbound left turn lane
No US 58 left turn lanes.


```
Signalized Intersection
```

Unsignalized Intersection

Median Crossovers
Inadequate intersection spacing per VDOT standards

Exiting US 58 left turn lanes do not meet VDOT
requirements. No US 58 right turn lanes.
No US 58 left turn lanes.
403.0
403.4

No US 58 left turn lanes

No US 58 left turn lanes.

正

APPENDIX D: US 58 INTERSECTION VOLUMES

正

正

APPENDIX E: US 58 INTERSECTION OPERATIONS

正

AN																

正

APPENDIX F: TOWN OF SOUTH HILL MEMORANDUM

INTERNATIONAL

Memorandum

TO:	Christopher Detmer, VDOT	DATE:	October 8, 2019
FROM:	Daniel Scolese, P.E.	SUBJECT:	Town of South US 58 Corridor Study

The purpose of this memorandum is to present the results and recommendations for the additional analyses conducted to evaluate alternatives for the US 58 Arterial Preservation Plan within the Town of South Hill. The study area is focused between the intersection of US 58 and Maple Lane and the intersection of US 58 and High Street. An initial study was conducted in 2018, that focused on improving the safety between the l-85 northbound off-ramp onto US 58 eastbound as well as evaluating three intersection improvements within the Town of South Hill. The goals of this follow-up study within the Town of South Hill are to:

- Improve the safety of US 58;
- Improve and maintain the capacity of US 58; and
- Incorporate and support the Town of South Hill's Economic Development goals.

Traffic counts and the existing conditions analysis from the 2018 study were carried forward to this follow-up study. A detailed crash history is provided at the end of this memo that highlights the significant safety concerns within the study area. Alternative designs were analyzed and reviewed in meetings with the Town of South Hill on March 27, 2019, May 20, 2019 and June 20, 2019. The recommendations were presented to the Town of South Hill Council on July 31, 2019 and adopted by the Town Council on August 12, 2019. The final recommendations are attached and are a result from these forums.

Future Volumes

Future turn movements volumes were calculated using a background rate of one percent, trip generation for potential development along the corridor between Mecklenburg and Brunswick county, and the potential economic growth within the Town of South Hill. The US 58 Richmond Arterial Preservation Plan Report includes further discussion on the development of the future traffic volumes. The future land use and development within the Town of South Hill was determined using existing documentation as well as input from VDOT and the Town of South Hill. The assumed land uses can be found attached at the end of this memo. Future traffic volumes were developed for the following scenarios:

- 2040 No-Development within Town of South Hill: No Build Volumes;
- 2040 No-Development within Town of South Hill: Build Volumes;
- 2040 Development occurring within Town of South Hill: No Build Volumes; and
- 2040 Development occurring within Town of South Hill: Build Volumes.

Future Recommendations and Operations:

The final adopted recommendations for the corridor are:

Intersection of US 58 with Maple Lane

- Construct right-turn lanes on eastbound and westbound Maple Lane. Traffic conditions at this location should be monitored into the future to determine if any additional improvements are needed.

Intersection of US 58 with Country Lane

- Reconfigure the intersection to reduce traffic signal phasing by relocating the US 58 left-turn movements and southbound thru-movements from Country Lane.
- Reconstruct the westbound US 58 right-turn lane onto US BUS 58 as a continuous right-turn.

US 58 and I-85 Interchange

- Reconstruct the interchange as either a Diverging Diamond Interchange (DDI) or Roundabouts configuration.
- Conduct an Interchange Modification Report (IMR) for approval from FHWA and VDOT.

US 58 and Thompson Street

- Reconfigure intersection to right-in/right-out and re-route movements through interparcel connections between Thompson Street and Peebles Street.

US 58 and Peebles Street

- Maintain access and lengthen eastbound left-turn lane as determined by a traffic capacity analysis. As development occurs, additional improvements will be required and final determination of appropriate traffic control shall be determined through a traffic signal warrant analysis, signal justification report, and approvals by District, State, and Federal officials.

US 58 and Crowder Street

- Reconfigure intersection to right-in/right-out.

US 58 and Cycle Lane

- Reconfigure the intersection to reduce traffic signal phasing by relocating eastbound and westbound leftturn movements on US 58 and northbound and southbound thru-movements from Cycle Lane.

US 58 and High Street

- Reconstruct the intersection to a roundabout. As development occurs, the northbound approach on High Street may need to be reconfigured to permit only right-turn movements to maintain the capacity of the intersection. The northbound left-turns and through movements will use the Cylce Lane traffic signal via the interparcel connection between Cycle Lane and High Street.

Detailed configuration concepts and operational results are attached to this memo. Table 1 summarizes the delay and LOS for the US 58 at-grade intersections. Table 2 and Table 3 summarize the delay and travel times for the US 58 and I-85 interchange. It should be noted that the diverging diamond traffic signals are coordinated so that vehicles stop only once at a traffic light. Figures of the delay and LOS results are attached to this memo.

Table 1: Town of South Hill US 58 At-Grade Intersection Operations

Table 2: Town of South Hill US 58 At-Grade Intersection Operations (Cont.)

Table 3: Town of South Hill US 58 At-Grade Intersection Operations (Cont.)

Intersection	Scenario	Overall Delay(LOS)	Delay per Lane Group by Approach (sec/veh)											
			Eastbound			Westbound			Northbound			Southbound		
			LT	TH	RT									
	AM Peak Hour													
	2018 Existing	1.3	$\begin{gathered} 8.9 \\ \text { A } \end{gathered}$	$\begin{gathered} 0.0 \\ \mathrm{~A} \end{gathered}$	$\begin{gathered} 0.0 \\ \text { A } \end{gathered}$	$\begin{gathered} 8.1 \\ \text { A } \end{gathered}$	$\begin{gathered} 0.0 \\ \text { A } \end{gathered}$	$\begin{gathered} 0.0 \\ \text { A } \end{gathered}$	$\begin{gathered} 20.5 \\ C \end{gathered}$	$\begin{gathered} 20.5 \\ C \end{gathered}$	$\begin{gathered} 20.5 \\ C \end{gathered}$	$\begin{gathered} 10.4 \\ \text { B } \end{gathered}$	$\begin{gathered} 10.4 \\ \text { B } \end{gathered}$	$\begin{gathered} 10.4 \\ \text { B } \end{gathered}$
		A	0.3 (C)			0.1 (A)			20.5 (C)			10.4 (B)		
	2040 No	0.9	8.8	0.0	0.0	8.4	0.0	0.0	15.5	15.5	15.5	10.3	10.3	10.3
	Development		A	A	A	B	A	A	C	C	C	B	B	B
	No Build	A	0.3 (A)			0.1 (A)			15.5 (C)			10.3 (B)		
		4.5	13.5	3.1	3.2	11.3	3.8	0.0	13.5	0.0	6.0	0.0	0.0	0.0
	Development		B	A	A	B	A	A	B	A	A	A	A	A
	Build	A	4.3 (A)			4.0 (A)			12.4 (B)			0.0 (A)		
	2040	2.6	10.1	0.0	0.0	8.7	0.0	0.0	27.4	27.4	27.4	11.7	11.7	11.7
	Development		B	A	A	A	A	A	D	D	D	B	B	B
	No Build	A	0.3 (A)			0.9 (A)			27.4 (D)			11.7 (B)		
	2040	5.1	14.7	4.3	3.8	11.1	3.6	0.0	NA	NA	2.7	0.0	0.0	0.0
High St \& US 58	Development		5.4 (A)			5.0 (A)			2.7 (A)			0.0 (A)		
	Build	A												
	PM Peak Hour													
	2018 Existing	3.2	8.9	0.0	0.0	9.1	0.0	0.0	$\begin{gathered} 46.7 \\ \mathrm{E} \end{gathered}$	$\begin{gathered} 46.7 \\ \mathrm{E} \end{gathered}$	$\begin{gathered} 46.7 \\ E \end{gathered}$	$\begin{gathered} 15.1 \\ C \end{gathered}$	$\begin{gathered} 15.1 \\ \text { B } \end{gathered}$	$\begin{gathered} 15.1 \\ \text { B } \end{gathered}$
		A	0.3 (C)			0.1 (A)			46.7 (E)			15.1 (C)		
	2040 No	13	8.9	0.0	0.0	9.0	0.0	0.0	17.9	17.9	17.9	11.2	11.2	11.2
	Development		A	A	A	B	A	A	C	C	C	B	B	B
	No Build	A	0.6 (A)			0.3 (A)			17.9 (C)			11.2 (B)		
	2040 No	4.6	13.7	3.2	3.3	11.5	3.9	3.9	13.7	0.0	6.2	0.0	0.0	0.3
	Development	4.6	B	A	A	B	A	A	B	A	A	A	A	A
		A	4.3 (A)			4.0 (A)			12.4 (B)			0.3 (A)		
	2040		10.3	0.0	0.0	10.7	0.0	0.0	107.5	107.5	107.5	18.0	18.0	18.0
	Development	13.8	B	A	A	B	A	A	F	F	F	C	C	C
	No Build	B	0.6 (A)			2.0 (A)			107.5 (F)			18.0 (C)		
	2040		15.5	4.7	4.3	11.3	3.7	3.7	NA	NA	2.7	0.0	0.0	0.3
	Development	5.4	B	A	A	B	A	A			A	A	A	A
		A	5.7 (A)			5.7 (A)			2.7 (A)			0.3 (A)		

Table 4: Town of South Hill US 58 At-Grade Intersection Operations (Cont.)

Table 5: US 58 \& I-85 Interchange Operations

Scenario	US 58 \& I-85 Interchange Travel Times (sec)	
	Eastbound	
WM Peak Hour		
2040 No Build	49	53
2040 Roundabout	47	45
2040 DDI	34	35
PM Peak Hour		
2040 No Build	55	59
2040 Roundabout	48	54
2040 DDI	34	34

Table 6: US 58 \& I-85 Interchange Travel Times

Operationally, the recommendations improved delay in the AM and PM Peak Hours. Travel times in 2040 for both conditions improved as well.

The recommendations were also developed to reduce crashes. The following summarizes the anticipated reduction in crashes:

- Intersection of US 58 and Country Lane: Decreases crashes up to 25%
- US 58 and I-85 Interchange: DDI expected to decrease crashes up to 30\% and Roundabouts would decrease crashes up to 20%
- Between Thompson Lane and High Street on US 58: Decreases crashes up to 40\%

In addition to the benefits of reduced delay and improved safety, the recommendations support the Town of South Hill's economic development efforts by providing the additional capacity on US 58 and intersecting roadways. It is important to note that each of the recommendations can be constructed independently. This flexibility allows for separate project submissions by the Town of South Hill and phasing of construction. The preferred recommendations are provided following this page containing detailed information, opinion of costs, and concepts.

Attachments:

US 58 Town of South Hill Study Area
US 58 Crash History
2018 Existing Turn Movement Counts
US 58 Town of South Hill Land Use
2040 No-Development within Town of South Hill: No Build Volumes
2040 No-Development within Town of South Hill: Build Volumes
2040 Development occurring within Town of South Hill: No Build Volumes
2040 Development occurring within Town of South Hill: Build Volumes
2018 Existing Operations
2040 No-Development within Town of South Hill: No Build Operations
2040 No-Development within Town of South Hill: Build Operations
2040 Development occurring within Town of South Hill: No Build Operations
2040 Development occurring within Town of South Hill: Build Operations
Concepts of Recommendations:

- Town of South Hill Overview
- Intersection of US 58 and Country Lane
- US 58 and I-85 Interchange
- US 58 Eastern Corporate Limits: US 58 intersections between Thompson Street and High Street

Independent Utility Considerations:

- Diverging Diamond Interchange with Town of South Hill Recommendations
- Roundabouts Interchange with Town of South Hill Recommendations

Crash Data (2013-2018)

Route 58 Arterial Management Plan
Figure 24
Intersection \#49: US 58 with Country Ln Town of South Hill
Recommendation: Reconfigure the existing intersection and traffic signal to a three-phase signal. Permit only through and right-turn movements on US 58. Permit only left and right-turn movements from US 58 BUS southbound onto US 58 and full movements from Country Ln northbound. Construct U-turn area west of existing intersection to permit movements destined to Country Ln from US 58 westbound or US 58 BUS
southbound. Remove existing I-85 off ramp onto US 58 BUS and construct continuous flow right-turn lane from US 58 westbound onto US 58 BUS. Eastbound US 58 left-turns to be managed at Maple Lane or interchange (depending on interchange configuration).
ROW Impacts: All improvements are within the ROW
Improvement Type: Congestion Mitigation, Economic Development, Safety, Travel Time Preservation

Operations:

2040 Future Delay (sec-LOS)	No Build	Build
AM	$24.6-\mathrm{C}$	$17.4-\mathrm{C}$
PM	$30.4-\mathrm{C}$	$20.4-\mathrm{C}$

Cost: $\$ 1.9 \mathrm{M}$ to $\$ 3.1 \mathrm{M}$

